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Abstract

A mathematical model is presented for particle-to-particle heat transfer in gas–solid systems. In developing the

model, simple kinetic equations are assumed to describe the inter-particle heat transfer process, and the particle–particle

interactions are considered stochastic. A stochastic approach is used to derive the population balance equation de-

scribing the variation of the density function of temperature distribution of the particulate phase. The moment

equations and numerical solution of the partial integro-differential equation of the population balance model are de-

rived and used to analyse the behaviour of a batch gas–solid system. The results indicate that the population balance

approach, used for developing the model describing the inter-particle contact heat conduction during collision capable

to take into account a number of parameters affecting the process, can be applied also for predicting heat transfer in

gas–solid processing systems.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In modelling heat transfer in gas–solid processing

systems, three inter-phase thermal processes are to be

considered: wall-to-bed, gas-to-particle and particle-to-

particle heat transfer. In systems with intensive motion

of particles, such as fluidised and spouted beds or

pneumatic conveying, the particle-to-particle heat

transfer occurs through inter-particle collisions. Exten-

sive experimental and theoretical work has been pub-

lished on wall-to-bed and gas-to-particle heat transfer

processes, but the studies of the effects of the inter-par-

ticle collisions on the heat transfer processes in multi-
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phase systems, especially examinations of the direct

particle-to-particle heat transfer, are rather scarce.

Dense particulate systems usually are modelled using

the Eulerian–Eulerian formulation [1–7] in which all

particle interactions are aggregated into some para-

meters of the particle phase treated also as a continuum.

Here, collisions are too frequent to consider those sep-

arately, and they influence the gas and particle temper-

ature profiles and the rate of heat transfer.

The Eulerian–Lagrangian approach handles the

continuous phase with the help of Eulerian variables,

whereas the equations of the particulate phase motion,

formulated by Lagrangian variables, are integrated

along the separate particle trajectories [8–13]. This

method allows to simulate the particle–particle collisions

as well, studying their influence on both the hydrody-

namic and thermal processes. Whilst simulation results

indicated that the inter-particle collisions may affect the

heat transfer processes significantly [3,14–18], the direct

particle-to-particle heat transfer during collisions has
ed.
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Nomenclature

A surface area, m2, random event

a variable [¼ 1=ðmCÞ] J�1 K

ak quadrature coefficient (Eq. (18))

bl quadrature coefficient (Eq. (18))

C specific heat J kg�1 K�1

f density function

F distribution function

h temperature increment, K

k frequency coefficient, s�1

m expected value

m mass, kg

MI I th order moment of the temperature

n population density function

N population distribution function, number of

particles

P probability

T temperature, K

t time, s

1A characteristic function of A

Greek symbols

a product of parameters b, A and h

b heat transfer coefficient, Wm�2 K�1

x random parameter of particle-to-particle

heat transfer

g random variable ð¼ n1;t þ ðn2;t � n1;tÞðx=2ÞÞ,
K

n random variable, �C
s time, time increment, s

h contact time, s

r2 variance

Subscripts

0 initial condition, before collision

J joint distribution

max maximal value

min minimal value

x random parameter

b heat transfer coefficient

h contact time

A random event
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been taken into consideration only by Mansoori et al.

[18].

In a four-way interaction Eulerian–Lagrangian

model, Mansoori et al. [18] computed the inter-particle

contact heat conduction in turbulent heat transfer in

gas–solid flows by using a deterministic kinetic model.

Delvosalle and Vanderschuren [19,20] developed this

model for describing heat transfer between particles by

conduction through the gas lens in fluidised bed dryers.

Recently, Blickle et al. [21,23] and Mih�aalyk�oo et al. [22]

have applied a different approach, deriving a stochastic

model for particle-to-particle heat transfer, applying a

simple kinetic model with random parameter [23]. On

the basis of this stochastic approach, a population bal-

ance equation was developed, treating the solid phase as

a large population of particles exhibiting temperature

distribution.

In this paper, an extension of this stochastic model of

particle-to-particle heat transfer is presented. The direct

heat transfer between particles is modelled by applying a

simple kinetic, characterised by a random variable ag-

gregated from different random physical variables of the

process. Using this kinetics, a population balance model

is developed for describing the variation of the temper-

ature distribution of particles. The moment equations

and numerical solution of the population balance

equation are derived, and the properties of the model are

analysed by simulation.
2. Heat transfer kinetics with random parameter

Consider a gas–solid system through which the gas

flow is continuous while the solid phase, consisted of a

large population of particles having identical sizes and

physical properties, is assumed to be of batch mode, i.e.

the number of particles in the system is constant. Let us

assume that this material system is mixed perfectly,

through the wall is isolated from the environment, and

the properties of particles can be considered constant

during the process except their temperature. Further-

more, let us assume that the temperature inside each

particle can be considered homogeneous, and the pop-

ulation of particles exhibit significant differences in their

temperature that can be described by some distribution

function of appropriate properties. If now, in some

moment of time heating of particles is started with the

gas having constant temperature, then the gas-to-parti-

cle and particle-to-particle heat transfer processes are

the only changes in the system. Since, however, in the

present study we are interested only in modelling the

direct particle-to-particle heat transfer in the following

we consider only this process.

Let us track two particles having, according to the

former conditions, identical mass m and heat capacity C,
but different temperatures T10 and T20, respectively. If
these particles collide at moment of time t ¼ 0 and re-

main in contact for some time h, then, provided that
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Fig. 1. Heat transfer between two colliding particles.
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T10 6¼ T20, some exchange of heat occurs between them as

it shown in Fig. 1.

Assuming that this heat transfer can be described by

an overall heat transfer coefficient b, then the equations

describing the variation of temperatures of particles are

mC
dT1ðtÞ
dt

¼ bA½T1ðtÞ � T2ðtÞ� ð1Þ

and

mC
dT2ðtÞ
dt

¼ �bA½T1ðtÞ � T2ðtÞ� ð2Þ

subject to the initial conditions T1ð0Þ ¼ T10, T2ð0Þ ¼ T20,
where A is the contact area of heat transfer between the

particles. Adding the two sides of Eqs. (1) and (2), we

obtain

mC
dT1
dt

�
þ dT2

dt

�
¼ 0 ð3Þ

expressing the conservation of energy in the process.

From Eq. (3)

mCð½T1ðtÞ � T10� þ ½T2ðtÞ � T20�Þ ¼ 0

and

T2ðtÞ ¼ T10 þ T20 � T1ðtÞ

and substituting it into Eq. (1) we get the following

equation

dT1ðtÞ
dt

¼ bA
mC

½T10 þ T20 � 2 � T1ðtÞ�

¼ abA½T10 þ T20 � 2T1ðtÞ� ð4Þ

where a ¼ 1
mC.

If the particles remain in contact to time h, then we

get from Eqs. (2) and (4)

T1ðhÞ ¼ T10 þ
T20 � T10

2
ð1� expð�2abAhÞÞ ð5Þ

and

T2ðhÞ ¼ T20 �
T20 � T10

2
ð1� expð�2abAhÞÞ ð6Þ

In Eqs. (5) and (6) parameters b, A, h are, in essence,

random quantities since the quality and area of contact,

as well as the contact time in such system may depend on

a number of random conditions [24,25]. As a result,

parameter x ¼ 1� expð�2abAhÞ is a random function
of parameters b;A and h. These parameters, however,

form in this functional dependence a product a ¼ bAh,
therefore, since it is difficult to separate their effects and,

in addition, the stochastic dependence between the

contact time and contact area may be significant it seems

to be reasonable to characterise those by means of their

joint probability distribution. As a consequence, de-

noting the density function of a by fa, the density

function fx of the distribution of x can be determined by

the following way:

fxðzÞ ¼
1

2að1� zÞ fa � lnð1� zÞ
2a

� �
; if z 2 ½0; 1Þ

0; if z 62 ½0; 1Þ

8<
:

We suppose that the density function fx, either from

measurement or simulation experiments, is known.
3. The population balance model

Next we will present a stochastic approach to setup

the partial integro-differential equation of the popula-

tion balance model of a gas–solid system with pure

particle-to-particle heat transfer. Let us assume that the

total number of particles in the system is N , and Nð:; :Þ
denotes the population distribution function of the

particles. Here, NðT ; tÞ gives the number of particles at

time t with a temperature which is less than T . As a

consequence, FN ðT ; tÞ ¼ NðT ; tÞ=N is the normalised

number distribution function of the particle population.

Let N be such a large number, that FN ðT ; tÞ can be ap-

proximated satisfactorily (in T and t uniformly) by a

family of distribution functions F ðT ; tÞ the members of

which are differentiable with respect to T and t. Let

f ðT ; tÞ be oF ðT ; tÞ=oT . If now nt denotes the temperature

of a randomly chosen particle of the population at time

t, then the distribution function of nt is FN ðT ; tÞ, and the

function F ðT ; tÞ, as a consequence of the former as-

sumptions, can be substituted for it. Furthermore, we

consider the difference between the functions FN ðT ; tÞ
and F ðT ; tÞ negligible, so that F ð:; tÞ and f ð:; tÞ can be

taken as the distribution and density functions of nt,
respectively.

Since, as it was assumed, the heat transfer between

particles occurs only by inter-particle contact heat con-

duction during collisions, the changes in the temperature

of a particle depend only on two conditions: what is the

temperature of the other particle the given particle is

contacted with, and what are the actual values of the

parameters characterising the heat transfer process.

Now, let us assume that the probability that the tem-

perature T1 of a particle changes in the interval of time

ðt; t þ sÞ in such a way that it meets only one particle of

temperature T2 6¼ T1 and the heat transfer process pro-

ceeds with parameter x is ksþ oðsÞ, independently of t,
T1, T2 and x, where k 2 ½0;1ð. Further, we suppose that
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the probability that one particle takes part in more than

one heat transfer process during this time is oðsÞ.
Let we choose randomly one particle at time t þ s

from the population. If it is such a particle that collided

with exactly one other particle in the interval of time

ðt; t þ sÞ, the second particle did not meet any other

particle during that time, and the temperature of the first

particle was changed in this collision, then this event is

denoted by A1. If it is such a particle that collided at

most with one other particle in the interval of time

ðt; t þ sÞ and its temperature did not change during this

collision, then this event is denoted by A2. Finally, let A3

stand for the complement of A1 [ A2. It can be easily

seen that P ðA1Þ ¼ ksþ oðsÞ, PðA2Þ ¼ 1� ks� oðsÞ and

PðA3Þ ¼ 2oðsÞ.
Now, using Eq. (5), we can determine the tempera-

ture ntþs of the observed particle. If event A1 occurs, then

we have ntþs ¼ g ¼ n1;t þ ðn2;t � n1;tÞðx=2Þ, but in the

case of occurring of the event A2 the temperature be-

comes ntþs ¼ n1;t. Finally, we do not need the explicit

form of ntþs when A3 occurs since PðA3Þ ¼ oðsÞ. There-
fore, we denote it simply by nð3Þtþs. Let the temperature of

the observed particle at time t be denoted by n1;t. Simi-

larly, let n2;t denote the temperature at time t of the

particle with which the observed particle collided, and

let x denote the aggregated random parameter cha-

racterising the heat transfer process in collision between

the particles. We suppose that N is large enough to treat

n1;t and n2;t as independent, identically distributed ran-

dom variables and their distributions are the same as the

distribution of nt. Finally, we suppose that x is also

independent of n1;t and n2;t, the density function of which

is fxð:Þ.
Then, using the theorem of the total probability, we

can write

ntþs ¼ g � 1A1
þ n1;t � 1A2

þ nð3Þtþs � 1A3
ð7Þ

where 1Ak , k ¼ 1; 2; 3 are the characteristic functions of

the sets Ak , k ¼ 1; 2; 3. From Eq. (7), we conclude that

the density function of ntþs can be derived as

f ðT ; t þ sÞ ¼ fgðT ; tÞ � ðksþ oðsÞÞ
þ f ðT ; tÞ � ð1� oðsÞÞ þ 2oðsÞ ð8Þ

In order to determine the density function fgðT ; tÞ, first
we determine the joint probability density function

fJðT ; S; tÞ of variables ðg; n2;t;xÞ as

fJðT ; S; zÞ ¼ f
2ðT � SÞ

z

�
þ S; t

�
� f ðS; tÞ � fxðzÞ �

2

z

where it was utilised that n1;t, n2;t and x are independent

random variables. Then, expressing the marginal prob-

ability density function fgðT ; tÞ of the variable g, which
has the property f ðT ; :Þ ¼ 0 when T 62 ½Tmin; Tmax�, we

obtain the following equation for fgðT ; tÞ
fgðT ; tÞ ¼
Z Tmax

Tmin

Z 1

0

f
2ðT � SÞ

z

�
þ S; t

�
f ðS; tÞfxðzÞ

� 2

z
dzdS

Substituting this expression into Eq. (8) we obtain

f ðT ; t þ sÞ ¼ ks �
Z Tmax

Tmin

Z 1

0

f
2ðT � SÞ

z

�
þ S; t

�

� f ðS; tÞfxðzÞ
2

z
dzdS

þ ð1� ksÞ � f ðT ; tÞ þ oðsÞ

Now, after some mathematical manipulations, we

obtain the following integro-differential equation as

s ! 0:

of
ot

ðT ; tÞ ¼ k
�
� f ðT ; tÞ þ

Z Tmax

Tmin

Z 1

0

f
2ðT � SÞ

z

�
þ S; t

�

�f ðS; tÞfxðzÞ
2

z
dzdS

�
; t > 0

f ðT ; 0Þ ¼ f0ðT Þ; T 2 ½Tmin; Tmax� ð9Þ

where f0ðT Þ denotes the initial probability density

function at time 0.

Introducing the notation nðT ; tÞ ¼ Nf ðT ; tÞ, where

nðT ; tÞdT expresses the number of particles in the system

having temperature from the interval (T ; T þ dT ) at time

t, finally we get the equation

onðT ; tÞ
ot

¼ k � f ðT ; tÞ þ 1

N

Z Tmax

Tmin

Z 1

0

f
2ðT � SÞ

z
þ S; t

� ��

� f ðS; tÞfxðzÞ
2

z
dzdS

�
; t > 0

f ðT ;0Þ ¼ f0ðT Þ; T 2 ½Tmin;Tmax� ð10Þ

This equation is, in essence, the population balance

equation of the heat transfer process under the condi-

tions specified previously, and it describes the time

evolution of the population density function nð:; :Þ cha-
racterising the temperature distribution of the popula-

tion of particles. Note, that, since N is constant, Eqs. (9)

and (10) are equivalent. Also, it is worth to mention

that, as it was expected, the population density function

is symmetrical to the point TminþTmax

2
for any value of t > 0

supposing the symmetry holds for the function n0ðT Þ.
4. Analysis of the moment equations

The moments of the population density function

nð:; :Þ, expressed as

MIðtÞ ¼
Z Tmax

Tmin

T InðT ; tÞdT ; I ¼ 0; 1; 2; . . . ð11Þ
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often provide very useful information about the system,

especially when the integro-differential equation (10)

may not be solved explicitly.

Multiplying both sides of Eq. (10) by T I and inte-

grating from Tmin to Tmax, after some transformations

(the details see in Appendix A), we obtain the following

system of ordinary differential equations:

dMIðtÞ
dt

¼ k �MIðtÞ þ
1

N

XI
i¼0

MiðtÞMI�iðtÞfi;I

 !
;

I ¼ 0; 1; 2; . . . t > 0

MIð0Þ ¼ MI ;0 ð12Þ

where

fi;I ¼
Z 1

0

I
i

� �
z
2

� �i
1
�

� z
2

�I�i
fxðzÞdz ð13Þ

We note that
PI

i¼0 fi;I ¼ 1 and fi;I P 0. Furthermore, in

the case of iP 1 fi;I ¼ 0 if and only if fxðzÞ is Dirac-delta

function at z ¼ 0. Eq. (12) forms a recursive set of

ordinary equations, i.e. if we know M0ðtÞ;M1ðtÞ; . . . ;
MI�1ðtÞ, then Eq. (12) is a linear inhomogeneous differ-

ential equation for MIðtÞ.
When I ¼ 0, then dM0ðtÞ=dt ¼ 0, that is M0ðtÞ �

M0;0ð¼ NÞ, as it was expected, since it means that the

total number of particles is constant. For I ¼ 1 we ob-

tain dM1ðtÞ=dt ¼ 0 that is M1ðtÞ � M1;0. This means that

during the heat transfer process the total amount of heat

of the system also remains constant, according to the

expectations. This latter consequence, together with the

case I ¼ 0, indicates that our model is an adequate

model of the physical process. In the case of I ¼ 2

dM2ðtÞ
dt

¼ �kf1;2 M2ðtÞ
 

�
M2

1;0

M0;0

!
ð14Þ

from which we obtain

M2ðtÞ ¼ M2;0

 
�
M2

1;0

M0;0

!
e�kf1;2t þ

M2
1;0

M0;0

ð15Þ

Using this expression, we can calculate the standard

deviation, namely

r2ðtÞ ¼ M2ðtÞ
M0ðtÞ

�M2
1 ðtÞ

M2
0 ðtÞ

¼ M2;0

M0;0

 
�
M2

1;0

M2
0;0

!
e�kf1;2t

¼ r2ð0Þe�kf1;2t: ð16Þ

Taking into account our former remark concerning

fi;I , we see that if t ! 1 then r2ðtÞ ! 0 except when

fxðzÞ is a Dirac-delta function at z ¼ 0. This is the spe-

cial case when there is no heat transfer between the

particles at all. In general, the model predicts that the

temperature distribution of the particle population is

equilising with time and becomes uniform as t ! 1.
Since we have the equality

f1;2 ¼ m1;x 1
�

� m1;x

2

�
� r2

x

2
ð17Þ

where m1;x ¼
R 1

0
zfxðzÞdz is the expectation of x and

r2
x ¼

R 1

0
ðz� m1;xÞ2fxðzÞdz is its variance, thus r2ðtÞ is the

function of m1;x and r2
x as it seen from Eq. (16).

Using Eq. (13) it is proved that 06 f1;2. Furthermore,

since 06m1;x 6 1 one can conclude that 06 m1;xð1�
m1;x

2
Þ6 1

2
, and the relation f1;2 6 1

2
follows from Eq. (17).

It can be easily seen also that f1;2 ¼ 0 if and only if fxðzÞ
is a Dirac-delta function at z ¼ 0, and f1;2 ¼ 1

2
if and only

if fxðzÞ is a Dirac-delta function at z ¼ 1. As a conse-

quence, r2
0e

�k
2
t
6 r2ðtÞ6 r2

0 and the equalities hold if and

only if fxðzÞ is a Dirac-delta function at z ¼ 1 or at

z ¼ 0, respectively.

Analysing Eq. (16) it can be proved that r2ðtÞ is a

monotonic decreasing function of f1;2, r2ðtÞ is a mono-

tonic increasing function of r2
x for any fixed m1;x, and

for any fixed r2
x r2ðtÞ is a monotonic decreasing function

of m1;x. These conclusions correspond to the physical

requirements. If the expectation of x is constant but its

dispersion decreases, then the dispersion of the particle

temperature becomes smaller, and if the dispersion of x
is constant but the expectation diminishes then the dis-

persion of the particle temperature increases. These facts

indicate as well that our model is adequate to the

physical process examined.
5. Numerical solution of the population balance equation

Since analytical solution of the integro-differential

equation (10) is not known, thus a numerical procedure

has been constructed for solving it, using discretization

with respect to both the temperature and time. The tem-

perature interval ½Tmin; Tmax�was transformed into interval

½0; 1� by means of normalisation ðT � TminÞ=ðTmax � TminÞ.
This does not restrict the generality of the model, and

does not alter the accuracy of simulation results.

Let us divide the time interval ð0; tÞ into M parts of

length s. We introduce mesh points tj ¼ j � s, (j ¼
0; 1; . . . ;M). Similarly, let the temperature interval ½0; 1�
and the interval ½0; 1� of the dummy variable z be divided
into N equal parts using the mesh points Ti ¼ i � h and

zl ¼ l � h, i; l ¼ 0; 1; . . . ;N , h ¼ 1
N. Now, replacing the

time derivative in Eq. (10) by the time increment, and by

applying a quadrature form to approximate the double

integral, we obtain the following difference equation:

nðTi; tjþ1Þ � nðTi; tjÞ
s

¼ �knðTi; tjÞ þ
k

M0;0

XN
k¼0

ak � nðTk ; tjÞ

�
XN
l¼1

n
2 � Ti þ ðzl � 2Þ � Tk

zl
; tj

� �

� 2
zl
� fl � bl þ error term ð18Þ

where i ¼ 0; 1; . . . ;N and j ¼ 0; 1; . . . ;M � 1.
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The constants ak and bl in Eq. (18) are the coefficients

of the quadrature form which depend on N and the type

of the quadrature applied, and fl ¼ fxðzlÞ. By means of

Eq. (18), we approximate the values nðTi; tjþ1Þ belonging
to the ( jþ 1)st plane of time from the values nðTi; tjÞ; i.e.
from by the values belonging the jth plane of time.

Since the values 2�Tiþðzl�2Þ�Tk
zl

in Eq. (18) usually do not

meet the mesh points, these are determined additionally

in each time step by means of interpolation on the basis

of the previously determined values of the actual plane

of time. Let the interpolation function be denoted by

/ðT ; tjÞ, then Eq. (18), neglecting the error term, can be

written as

~yyi;jþ1 ¼ yi;j þ s �
 

� kyi;j þ
k

M0;0

XN
k¼0

yk;j � ak

�
XN
l¼1

/
2 � Ti þ ðzl � 2Þ � Tk

zl
; tj

� �
� 2
zl
� fl � bl

!

ð19Þ

where i ¼ 0; 1; . . . ;N , j ¼ 0; 1; . . . ;M � 1, and yi;0 ¼
M0;0 � n0ðTiÞPN

k¼0
n0ðTkÞ�ak

.

Computing ~yyi;jþ1 we have to take into account that

/ð2�Tiþðzl�2Þ�Tk
zl

; tjÞ ¼ 0 when the value of 2�Tiþðzl�2Þ�Tk
zl

is out

of the interval ½0; 1�. After determining ~yyi;jþ1 they are

normalised in each time step by using the expression

yi;jþ1 ¼ M0;0 � ~yyi;jþ1PN

k¼0
~yyk;jþ1 �ak

, in order to have the conserva-

tion law held.

In the numerical experiences, the composite trape-

zoidal rule and linear spline interpolation was applied.

The value of parameter k was chosen 1. Comparing the

differences between the analytically and numerically

computed moments of the temperature distribution

checked the accuracy of the numerical results. The mo-

ments determined by numerical method were computed

as m0;j ¼
PN

i¼0 yi;j � ai; m1;j ¼
PN

i¼0 Tiyi;j � ai and m2;j ¼PN
i¼0 T

2
i yi;j � ai.
Fig. 2. Differences between the variances computed numeri-

cally and analytically.
In the case of the zeroth order moment, the differ-

ences were zero because of the normalised numerical

values, but for first order moment we obtained errors as

small as the round errors were.

The absolute values of the differences between the

variances computed numerically and analytically for

different values of h and s are shown in Fig. 2. With

increasing number of mesh points, the differences tend

to zero what indicate the convergence of the method

applied.
6. Simulation results and discussion

The behaviour of the population balance model de-

veloped was examined by simulation using a computer

program written in Visual C++. Since the interval of

variation of the temperature and parameter x is ½0; 1�,
both the initial distribution of temperature and distri-

bution of parameter x were described with beta distri-

butions. The computations were carried out in the time

interval ½0; 7� with parameters s ¼ 1=40 and h ¼ 1=20 in

all cases.

The time evolution of the population density func-

tion of temperature distribution of the particulate phase

is presented in Figs. 3–5, starting from different initial

density functions n0ðT Þ. In Fig. 3, n0ðT Þ � 1 and

fxðzÞ � 1 were chosen. It is seen that the density func-

tion nðT ; :Þ, remaining symmetrical all time, gradually

concentrates around the average value of temperature.

In Figs. 4 and 5, the initial density functions were

chosen 90T ð1� T Þ8 and 90T 8ð1� T Þ, respectively, but
the density function fxðzÞ was identically 1 in both cases.

It is seen well that the density functions kept the skew

shapes of the initial density functions and they concen-

trate on lower and higher average temperature respec-

tively.

The computational results, obtained for the initial

population density function of temperature n0ðT Þ � 1

and presented in Figs. 6–9, illustrate the influence of

the density function fxðzÞ of random parameter x. The
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Fig. 3. Time evolution of the population density function of

temperature starting from the initial distribution n0ðT Þ � 1.
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Fig. 4. Time evolution of the population density function

of temperature starting from the initial distribution n0ðT Þ ¼
90T ð1� T Þ8.
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Fig. 5. Time evolution of the population density function of

temperature starting from the initial distribution n0ðT Þ ¼
90T 8ð1� T Þ.
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Fig. 6. The population density function at different moments

of time obtained for the density function fxðzÞ ¼ 2ð1� zÞ.
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Fig. 7. The population density function at different moments

of time obtained for the density function fxðzÞ ¼ 2z.

Fig. 8. Comparison of the population density functions ob-

tained at time 5 for fxðzÞ ¼ 2ð1� zÞ and fxðzÞ ¼ 2z.
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Fig. 9. Comparison of the population density functions at time

5 for fxðzÞ ¼ 80ðz� 0:5Þ4 and fxðzÞ ¼ 11; 264ðz� 0:5Þ10.
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results shown in Fig. 6 were computed for fxðzÞ ¼
2ð1� zÞ, while results shown in Fig. 7 were obtained for

the case fxðzÞ ¼ 2z. The population density functions

of temperature at different moments of time are similar

as regards the symmetry but the rates of equalisation

of temperature differ from each other. This follows
from the fact that when fxðzÞ ¼ 2ð1� zÞ then m1;x ¼ 1
3

and r2
x ¼ 1

18
, but when fxðzÞ ¼ 2z then m1;x ¼ 2

3
and

r2
x ¼ 1

18
.

The population density functions in Figs. 6 and 7

obtained at time 5 are compared in Fig. 8. It illustrates

well that the density function in the case of fxðzÞ ¼
2ð1� zÞ is wider than that computed for fxðzÞ ¼ 2z at

the same time. It indicates also that the model corre-

sponds to the physical requirements, as for fixed value of
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r2
x equalisation of the temperature proceeds with higher

rate when the expectation of heat transfer parameter x is

larger. This also fits the results obtained with the aid of

the moment analysis.

Also, as it was established analysing the moment

equations, for fixed value of m1;x, the rate of equalisa-

tion of the temperature is higher when r2
x is smaller.

Illustration of this statement is presented in Fig. 9. Here,

the density functions obtained for fxðzÞ ¼ 80ðz� 0:5Þ4
and fxðzÞ ¼ 11; 264ðz� 0:5Þ10 at time t ¼ 5, computed

for value m1;x ¼ 0:5 and initial density function

n0ðT Þ � 1, are presented. In the first case r2
x ¼ 5=28

was chosen, but in the second case we had r2
x ¼ 11=52.

Fig. 9 shows that, as it is expected, in the case

of fxðzÞ ¼ 80ðz� 0:5Þ4 the population density function

concentrates around the expectation more quickly.
7. Conclusions

Using a simple kinetic model with random parame-

ters, a population balance model was developed for

describing particle-to-particle heat transfer during col-

lisions in fluid–solid processing systems. Using a sto-

chastic approach for treating the events of particle

population derived the population balance equation.

The moment equations, describing the time evolution of

the moments of the temperature distribution, were de-

rived from the population balance equation that proved

to be closed for any order.

The simulation results, obtained by solving the inte-

gro-differential equation using the finite difference tech-

nique combined with linear spline interpolation, indicate

that the model developed provides a good tool for de-

scribing the temperature inhomogeneities of the popu-

lation of particles in gas–solid systems. The model in the

present form describes, as the simulation results also

show quite well, the behaviour of a batch gas–solid

system satisfactorily, and it allows taking into account a

number of parameters affecting the process.

In further development of the model, the fluid-par-

ticle and wall-to-particle heat transfer processes will also

be considered, and by means of such generalisation we

will obtain population balance-based models for de-

scribing heat transfer processes in a number of fluid–

solid processing systems. This is especially important in

the case of the highly exothermic processes in which hot

spots may appear because of the not satisfactory mixing

of the particulate phase.
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Appendix A

Derivation of the moment equations.

Taking into account that the interval ½Tmin; Tmax� can
be transformed into interval ½0; 1� by means of the

transformation x ¼ T�Tmin

Tmax�Tmin
and y ¼ S�Tmin

Tmax�Tmin
, we can use

in our consideration interval ½0; 1� instead of ½Tmin; Tmax�
without any restriction.

Since nðx; tÞ ¼ 0, if x 62 ½0; 1�, and fxðzÞ ¼ 0, if

x 62 ½0; 1� from Eq. (10), after determining the bounds,

we obtain the following equations

onðx; tÞ
ot

¼ k �
�
� nðx; tÞ þ 1

N
�
Z 2x

0

2

z
fxðzÞ

�
Z 2x

2�z

2ðx�1Þ
2�z þ1

nðy; tÞ � n 2ðx� yÞ
z

�
:þ y; t

�
dy dz

þ 1

N

Z 1

2x

2

z
fxðzÞ

Z 2x
2�z

0

nðy; tÞ � n 2ðx� yÞ
z

�

þ y; t
�
dy dz

�
; if x 2 ½0; 0:5�

and

onðx; tÞ
ot

¼ k �
"
� nðx; tÞ þ 1

N

Z 2ð1�xÞ

0

2

z
fxðzÞ

�
Z 2x

2�z

2ðx�1Þ
2�z þ1

nðy; tÞ � n 2ðx� yÞ
z

þ y; t

 !
dy dz

þ 1

N

Z 1

2ð1�xÞ

2

z
fxðzÞ

�
Z 1

2ðx�1Þ
2�z þ1

nðy; tÞ � n 2ðx� yÞ
z

þ y; t
� �

dy dz

#
;

if x 2 �0:5; 1�:

Then, introducing the notation

M ð1Þ
I ðtÞ ¼

Z 0:5

0

xInðx; tÞdx and

M ð2Þ
I ðtÞ ¼

Z 1

0:5

xInðx; tÞdx

and taking into account that

MIðtÞ ¼
Z 1

0

xInðx; tÞdx ¼ M ð1Þ
I ðtÞ þM ð2Þ

I ðtÞ

the moment equations will look like:
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oM ð1Þ
I ðtÞ
ot

¼ k �
"
�
Z 0:5

0

xInðx; tÞdx:þ 1

N

Z 0:5

0

xI
Z 2x

0

2

z
fxðzÞ

�
Z 2x

2�z

2ðx�1Þ
2�z þ1

nðy; tÞ � n 2ðx� yÞ
z

y; t

 !
dydzdx

þ 1

N

Z 0:5

0

xI
Z 1

2x

2

z
fxðzÞ

�
Z 2x

2�z

0

nðy; tÞ � n 2ðx� yÞ
z

y; t
� �

dydzdx

#

ðA:1Þ

and

oM ð2Þ
I ðtÞ
ot

¼ k �
"
�
Z 1

0:5

xInðx; tÞdx:þ 1

N

Z 1

0:5

xI
Z 2ð1�xÞ

0

2

z
fxðzÞ

�
Z 2x

2�z

2ðx�1Þ
2�z þ1

nðy; tÞ � n 2ðx� yÞ
z

y; t

 !
dydzdx

þ 1

N

Z 1

0:5

xI
Z 1

2ð1�xÞ

2

z
fxðzÞ

�
Z 1

2ðx�1Þ
2�z þ1

nðy; tÞ � n 2ðx� yÞ
z

y; t
� �

dydzdx

#

ðA:2Þ

Substituting the new variable u ¼ 2ðx�yÞ
z þ y into Eqs.

(A.1) and (A.2), we obtain

oM ð1Þ
I ðtÞ
ot

¼ �kM ð1Þ
I ðtÞ þ k

N
�
"Z 0:5

0

Z 2x

0

Z 1

0

2fxðzÞ
2� z

� xIn
2x� zu
2� z

; t

 !
nðu; tÞdudzdx

þ
Z 0:5

0

Z 1

2x

Z 2x
z

0

2fxðzÞ
2� z

xIn
2x� zu
2� z

; t
� �

nðu; tÞdudzdx
#

ðA:3Þ

and

oM ð2Þ
I ðtÞ
ot

¼�kM ð2Þ
I ðtÞþ k

N
�
"Z 1

0:5

Z 2ð1�xÞ

0

Z 1

0

2fxðzÞ
2� z

�xIn
2x� zu
2� z
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 !
nðu; tÞdudzdx

þ
Z 1

0:5

Z 1

2ð1�xÞ

Z 1

2ðx�1Þ
z þ1

2fxðzÞ
2� z

xIn
2x� zu
2� z

; t
� �

nðu; tÞdudzdx
#

ðA:4Þ

Now again, substituting the variable y ¼ 2x�zu
2�z into Eqs.

(A.3) and (A.4), and changing the order of integration,

these equations take the forms
oM ð1Þ
I ðtÞ
ot

¼ �kM ð1Þ
I ðtÞ þ k

N
�
Z 1

0

Z 1

0

Z 1�zu
2�z

zð1�uÞ
2�z

fxðzÞ
"

� z
2
u 1� z

2

� �
y

� �I
nðy; tÞnðu; tÞdy dzdu

þ
Z 1

0

Z 1

0

Z zð1�uÞ
2�z

0

fxðzÞ
z
2
u

�
þ 1� z

2

� �
y
�I

� nðy; tÞnðu; tÞdy dzdu
#

ðA:5Þ

and

oM ð2Þ
I ðtÞ
ot

¼ �kM ð2Þ
I ðtÞ þ k

N
�
Z 1

0

Z 1

0

Z 2�z�zu
2�z
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2�z

fxðzÞ
z
2
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�"
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2

� �
y
�I
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Z 1
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fxðzÞ
z
2
uþ 1� z
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� �
y
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� nðy; tÞnðu; tÞdy dzdu
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ðA:6Þ

Since the sequence inequalities 06 zð1�uÞ
2�z 6

1�zu
2�z 6

2�z�zu
2�z 6 1 hold, the integrals can be added leading to the

equations

oM ð1Þ
I ðtÞ
ot

¼ �kM ð1Þ
I ðtÞ þ k

N
�
Z 1

0

Z 1

0

Z 1�zu
2�z
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� z
2
uþ 1� z

2

� �
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0 Þ
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oM ð2Þ
I ðtÞ
ot

¼ �kM ð2Þ
I ðtÞ þ k

N
�
Z 1

0

Z 1

0

Z 1
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2�z

fxðzÞ

� z
2
uþ 1� z

2

� �
y
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nðy; tÞnðu; tÞdy dzdu

ðA:6
0 Þ

and the equation governing the variation of the Ith
moment of the temperature distribution takes the form

oMIðtÞ
ot

¼ �kMIðtÞ þ
k
N
�
Z 1

0

Z 1

0

Z 1

0

fxðzÞ

� z
2
uþ 1� z

2

� �
y
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nðy; tÞnðu; tÞdy dzdu

ðA:7Þ
Introducing the notation fi;I ¼

R 1

0

� I
i

�
� ðz

2
Þi � ð1� z

2
ÞI�i

fxðzÞdz, Eq. (A.7) can be rewritten into the final form

oMIðtÞ
ot

¼ �kMIðtÞ þ
k
N
�
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Z 1

0

XI
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